212 research outputs found

    The root of the East African cichlid radiations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For decades cichlid fishes (Perciformes: Cichlidae) of the East African cichlid radiations (Teleostei: Cichlidae) have served as natural experimental subjects for the study of speciation processes and the search for potential speciation key factors. Despite numerous phylogenetic studies dealing with their intragroup relationships, surprisingly little is known about the phylogenetic placement and time of origin of this enigmatic group. We used multilocus DNA-sequence data from five nuclear and four mitochondrial genes and refined divergence time estimates to fill this knowledge gap.</p> <p>Results</p> <p>In concordance with previous studies, the root of the East African cichlid radiations is nested within the so called "Tilapias", which is a paraphyletic assemblage. For the first time, we clarified tilapiine intragroup relationships and established three new monophyletic groups:"Oreochromini", "Boreotilapiini" and a group with a distribution center in East/Central Africa, the "Austrotilapiini". The latter is the founder lineage of the East African radiations and emerged at the Miocene/Oligocene boundary at about 14 to 26 mya.</p> <p>Conclusion</p> <p>Our results provide the first resolved hypothesis for the phylogenetic placement of the megadiverse East African cichlid radiations as well as for the world's second most important aquaculture species, the Nile Tilapia, <it>Oreochromis niloticus</it>. Our analyses constitute not only a robust basis for African cichlid phylogenetics and systematics, but provide a valid and necessary framework for upcoming comparative phylogenomic studies in evolutionary biology and aquaculture.</p

    Repertoire-wide gene structure analyses : a case study comparing automatically predicted and manually annotated gene models

    Get PDF
    Background The location and modular structure of eukaryotic protein-coding genes in genomic sequences can be automatically predicted by gene annotation algorithms. These predictions are often used for comparative studies on gene structure, gene repertoires, and genome evolution. However, automatic annotation algorithms do not yet correctly identify all genes within a genome, and manual annotation is often necessary to obtain accurate gene models and gene sets. As manual annotation is time-consuming, only a fraction of the gene models in a genome is typically manually annotated, and this fraction often differs between species. To assess the impact of manual annotation efforts on genome-wide analyses of gene structural properties, we compared the structural properties of protein-coding genes in seven diverse insect species sequenced by the i5k initiative. Results Our results show that the subset of genes chosen for manual annotation by a research community (3.5–7% of gene models) may have structural properties (e.g., lengths and exon counts) that are not necessarily representative for a species’ gene set as a whole. Nonetheless, the structural properties of automatically generated gene models are only altered marginally (if at all) through manual annotation. Major correlative trends, for example a negative correlation between genome size and exonic proportion, can be inferred from either the automatically predicted or manually annotated gene models alike. Vice versa, some previously reported trends did not appear in either the automatic or manually annotated gene sets, pointing towards insect-specific gene structural peculiarities. Conclusions In our analysis of gene structural properties, automatically predicted gene models proved to be sufficiently reliable to recover the same gene-repertoire-wide correlative trends that we found when focusing on manually annotated gene models only. We acknowledge that analyses on the individual gene level clearly benefit from manual curation. However, as genome sequencing and annotation projects often differ in the extent of their manual annotation and curation efforts, our results indicate that comparative studies analyzing gene structural properties in these genomes can nonetheless be justifiable and informative

    Signatures o DNA Methylation across Insects Suggest Reduced DNA Methylation Levels in Holometabola

    Get PDF
    It has been experimentally shown that DNA methylation is involved in the regulation of gene expression and the silencing of transposable element activity in eukaryotes. The variable levels of DNA methylation among different insect species indicate an evolutionarily flexible role of DNA methylation in insects, which due to a lack of comparative data is not yet well-substantiated. Here, we use computational methods to trace signatures of DNA methylation across insects by analyzing transcriptomic and genomic sequence data from all currently recognized insect orders. We conclude that: 1) a functional methylation system relying exclusively on DNA methyltransferase 1 is widespread across insects. 2) DNA methylation has potentially been lost or extremely reduced in species belonging to springtails (Collembola), flies and relatives (Diptera), and twisted-winged parasites (Strepsiptera). 3) Holometabolous insects display signs of reduced DNA methylation levels in protein-coding sequences compared with hemimetabolous insects. 4) Evolutionarily conserved insect genes associated with housekeeping functions tend to display signs of heavier DNA methylation in comparison to the genomic/transcriptomic background. With this comparative study, we provide the much needed basis for experimental and detailed comparative analyses required to gain a deeper understanding on the evolution and function of DNA methylation in insects

    Phylogenetic support values are not necessarily informative: the case of the Serialia hypothesis (a mollusk phylogeny)

    Get PDF
    Background: Molecular phylogenies are being published increasingly and many biologists rely on the most recent topologies. However, different phylogenetic trees often contain conflicting results and contradict significant background data. Not knowing how reliable traditional knowledge is, a crucial question concerns the quality of newly produced molecular data. The information content of DNA alignments is rarely discussed, as quality statements are mostly restricted to the statistical support of clades. Here we present a case study of a recently published mollusk phylogeny that contains surprising groupings, based on five genes and 108 species, and we apply new or rarely used tools for the analysis of the information content of alignments and for the filtering of noise (masking of random-like alignment regions, split decomposition, phylogenetic networks, quartet mapping). Results: The data are very fragmentary and contain contaminations. We show that that signal-like patterns in the data set are conflicting and partly not distinct and that the reported strong support for a "rather surprising result" (monoplacophorans and chitons form a monophylum Serialia) does not exist at the level of primary homologies. Split-decomposition, quartet mapping and neighbornet analyses reveal conflicting nucleotide patterns and lack of distinct phylogenetic signal for the deeper phylogeny of mollusks. Conclusion: Even though currently a majority of molecular phylogenies are being justified with reference to the 'statistical' support of clades in tree topologies, this confidence seems to be unfounded. Contradictions between phylogenies based on different analyses are already a strong indication of unnoticed pitfalls. The use of tree-independent tools for exploratory analyses of data quality are highly recommended. Concerning the new mollusk phylogeny more convincing evidence is needed

    Parametric and non-parametric masking of randomness in sequence alignments can be improved and leads to better resolved trees

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Methods of alignment masking, which refers to the technique of excluding alignment blocks prior to tree reconstructions, have been successful in improving the signal-to-noise ratio in sequence alignments. However, the lack of formally well defined methods to identify randomness in sequence alignments has prevented a routine application of alignment masking. In this study, we compared the effects on tree reconstructions of the most commonly used profiling method (GBLOCKS) which uses a predefined set of rules in combination with alignment masking, with a new profiling approach (ALISCORE) based on Monte Carlo resampling within a sliding window, using different data sets and alignment methods. While the GBLOCKS approach excludes variable sections above a certain threshold which choice is left arbitrary, the ALISCORE algorithm is free of <it>a priori </it>rating of parameter space and therefore more objective.</p> <p>Results</p> <p>ALISCORE was successfully extended to amino acids using a proportional model and empirical substitution matrices to score randomness in multiple sequence alignments. A complex bootstrap resampling leads to an even distribution of scores of randomly similar sequences to assess randomness of the observed sequence similarity. Testing performance on real data, both masking methods, GBLOCKS and ALISCORE, helped to improve tree resolution. The sliding window approach was less sensitive to different alignments of identical data sets and performed equally well on all data sets. Concurrently, ALISCORE is capable of dealing with different substitution patterns and heterogeneous base composition. ALISCORE and the most relaxed GBLOCKS gap parameter setting performed best on all data sets. Correspondingly, Neighbor-Net analyses showed the most decrease in conflict.</p> <p>Conclusions</p> <p>Alignment masking improves signal-to-noise ratio in multiple sequence alignments prior to phylogenetic reconstruction. Given the robust performance of alignment profiling, alignment masking should routinely be used to improve tree reconstructions. Parametric methods of alignment profiling can be easily extended to more complex likelihood based models of sequence evolution which opens the possibility of further improvements.</p

    Evidence for independent Hox gene duplications in the hagfish lineage: a PCR-based gene inventory of Eptatretus stoutii

    Get PDF
    Hox genes code for transcription factors that play a major role in the development of all animal phyla. In invertebrates these genes usually occur as tightly linked cluster, with a few exceptions where the clusters have been dissolved. Only in vertebrates multiple clusters have been demonstrated which arose by duplication from a single ancestral cluster. This history of Hox cluster duplications, in particular during the early elaboration of the vertebrate body plan, is still poorly understood. In this paper we report the results of a PCR survey on genomic DNA of the pacific hagfish Eptatretus stoutii. Hagfishes are one of two clades of recent jawless fishes that are an offshoot of the early radiation of jawless vertebrates. Our data provide evidence for at least 33 distinct Hox genes in the hagfish genome, which is most compatible with the hypothesis of multiple Hox clusters. The largest number, seven, of distinct homeobox fragments could be assigned to paralog group 9, which could imply that the hagfish has more than four clusters. Quartet mapping reveals that within each paralog group the hagfish sequences are statistically more closely related to gnathostome Hox genes than with either amphioxus or lamprey genes. These results support two assumptions about the history of Hox genes: (1) The association of hagfish homeobox sequences with gnathostome sequences suggests that at least one Hox cluster duplication event happened in the stem of vertebrates, i.e., prior to the most recent common ancestor of jawed and jawless vertebrates. (2) The high number of paralog group 9 sequences in hagfish and the phylogenetic position of hagfish suggests that the hagfish lineage underwent additional independent Hox cluster/-gene duplication events

    The role of the triangle singularity in Λ(1405)\Lambda(1405) production in the π−p→K0πΣ\pi^-p\rightarrow K^0\pi\Sigma and pp→pK+πΣpp\rightarrow pK^+\pi\Sigma processes

    Full text link
    We have investigated the cross section for the π−p→K0πΣ\pi^-p\rightarrow K^0\pi\Sigma and pp→pK+πΣpp\rightarrow pK^+\pi\Sigma reactions paying attention to a mechanism that develops a triangle singularity. The triangle diagram is realized by the decay of a N∗N^* to K∗ΣK^*\Sigma and the K∗K^* decay into πK\pi K, and the πΣ\pi\Sigma finally merges into Λ(1405)\Lambda(1405). The mechanism is expected to produce a peak around 21402140 MeV in the KΛ(1405)K\Lambda(1405) invariant mass. We found that a clear peak appears around 21002100 MeV in the KΛ(1405)K\Lambda(1405) invariant mass which is about 4040 MeV lower than the expectation, and that is due to the resonance peak of a N∗N^* resonance which plays a crucial role in the K∗ΣK^*\Sigma production. The mechanism studied produces the peak of the Λ(1405)\Lambda(1405) around or below 1400 MeV, as is seen in the pp→pK+πΣpp\rightarrow pK^+\pi\Sigma HADES experiment.Comment: 12 pages, 9 figure

    A minimum reporting standard for multiple sequence alignments

    Get PDF
    Multiple sequence alignments (MSAs) play a pivotal role in studies of molecular sequence data, but nobody has developed a minimum reporting standard (MRS) to quantify the completeness of MSAs. We present an MRS that relies on four simple completeness metrics. The metrics are implemented in AliStat, a program developed to support the MRS. A survey of published MSAs illustrates the benefits and unprecedented transparency offered by the MRS.CSIRO
    • …
    corecore